skip to main content
Primo Search
Search in: Busca Geral

Eletrificação dos sistemas precipitantes na região Amazônica: processos físicos e dinâmicos do desenvolvimento de tempestades

Albrecht, Rachel Ifanger

Biblioteca Digital de Teses e Dissertações da USP; Universidade de São Paulo; Instituto de Astronomia, Geofísica e Ciências Atmosféricas 2008-06-13

Acesso online. A biblioteca também possui exemplares impressos.

  • Título:
    Eletrificação dos sistemas precipitantes na região Amazônica: processos físicos e dinâmicos do desenvolvimento de tempestades
  • Autor: Albrecht, Rachel Ifanger
  • Orientador: Rodriguez, Carlos Augusto Morales
  • Assuntos: Sistemas Convectivos; Amazônia; Raios; Microfísica De Nuvens; Formação De Nuvens; Eletrificação De Nuvens; Lightning; Convective Systems; Cloud Modeling; Cloud Microphysics; Cloud Electrification; Cloud Development; Amazon
  • Notas: Tese (Doutorado)
  • Descrição: Os sistemas convectivos da região Amazônica possuem características microfísicas peculiares, que variam de um caráter convectivo marítimo (estação chuvosa) a continental (estação de transição seca-chuvosa). Essas características modulam a eletrificação desses sistemas, porém ainda não se sabe quais são os processos dominantes que intensificam o número de descargas elétricas de uma estação para outra: efeito dos aerossóis, termodinâmico, grande-escala ou topografia? Para responder à essa pergunta, o objetivo deste trabalho foi identificar e quantificar a importância de cada um desses efeitos na eletrificação dos sistemas convectivos da Amazônia. A metodologia foi baseada em análises de dados observacionais do experimento de campo DRYTOWET e em um modelo numérico com parametrizações de transferências de cargas e descargas elétricas. A análise do ciclo anual das descargas elétricas do tipo nuvem-solo (CGs) mostrou que a atividade elétrica dos sistemas precipitantes da região sudoeste da Amazônia aumenta durante a transição da estação seca para a estação chuvosa (Agosto a Setembro), associada aos sistemas convectivos com maior desenvolvimento vertical que acontecem nesse período. Com o estabelecimento da estação chuvosa (Novembro a Março), o número de CGs diminui porém a atividade elétrica ainda se mantêm. A porcentagem desses totais de CGs que tinham polaridade positiva (+CGs) tem média de 12% durante todo o ano, aumentando drasticamente para até 25% em Setembro, durante a transição entre as estações secas e chuvosa. Esse aumento da %+CGs ocorreu simultaneamente ao aumento da poluição atmosférica provocada pela queima de biomassa das pastagens realizada pelos fazendeiros locais, que as preparam para a agricultura e pecuária durante o início das primeiras chuvas. Por outro lado, o aumento da %+CGs das tempestades também ocorreu preferencialmente sobre a área de pastagem do estado de Rondônia. Através da análise de dados de radar dos sistemas precipitantes que ocorreram durante o experimento DRYTOWET, foi constatado que as tempestades positivas (tempestades que produzem mais de 50% de +CGs em 50% de seu tempo de vida) se formaram em ambientes mais secos e com alturas do nível de convecção por levantamento (NCL, altura da base da nuvem) maiores do que as demais tempestades (tempestades negativas), durante todo o experimento mas com maiores diferenças durante o final da estação seca (Setembro-Outubro). Com altura da base da nuvem mais elevada, a espessura da camada quente (ECQ - base da nuvem até a isoterma de 0oC) diminui, aumentando assim a velocidade das correntes ascendentes através de um melhor processamento da energia potencial disponível para convecção (CAPE) devido a um menor entranhamento. O aumento da velocidade das correntes ascendentes dentro da nuvem resulta em tempestades mais profundas e mais intensas. O efeito do aumento do NCL é uma característica das regiões com vegetação de pastagem, onde a razão entre o calor sensível e latente na superfície é maior do que as áreas florestadas, aumentando a altura da camada limite planetária. As diferenças de concentração total e distribuição de tamanho dos aerossóis devido ao aumento da poluição durante a transição entre as estações seca e chuvosa não foram conclusivas quanto a um possível efeito na distribuição de hidrometeoros das tempestade positivas e negativas, uma vez que o ciclo diurno da concentração dos aerossóis acompanha o ciclo diurno da camada limite planetária, que também regula o efeito da ECQ. Simulações numéricas com um modelo 1D de nuvem, acoplado à parametrizações de transferências de cargas elétricas entre hidrometeoros e raios, mostraram que a estrutura termodinâmica da atmosfera foi a maior responsável pela eletrificação das tempestades simuladas, aumentando a velocidade das correntes ascendentes. O efeito do aumento do número de aerossóis, que inibe da fase quente da nuvem e conseqüentemente fortalece a da fase fria da nuvem fornecendo mais vapor e gotículas de nuvem para essa região, provocou a diminuição da quantidade de granizo nas tempestades simuladas e o aumento de partículas agregadas menores, como os flocos de neve e graupel, diminuindo a freqüência de raios.
  • DOI: 10.11606/T.14.2008.tde-24102008-154430
  • Editor: Biblioteca Digital de Teses e Dissertações da USP; Universidade de São Paulo; Instituto de Astronomia, Geofísica e Ciências Atmosféricas
  • Data de criação/publicação: 2008-06-13
  • Formato: Adobe PDF
  • Idioma: Português

Buscando em bases de dados remotas. Favor aguardar.