skip to main content
Primo Search
Search in: Busca Geral

Crystalline structure, electronic and lattice-dynamics properties of NbTe2

Barajas-Aguilar, Aarón Hernán ; Irwin, J. C. ; Garay-Tapia, Andrés Manuel ; Schwarz, Torsten ; Paraguay Delgado, Francisco ; Brodersen, P. M. ; Prinja, Rajiv ; Kherani, Nazir ; Jiménez Sandoval, Sergio J.

Scientific reports, 2018-11, Vol.8 (1), p.1-14, Article 16984 [Periódico revisado por pares]

London: Nature Publishing Group

Texto completo disponível

Citações Citado por
  • Título:
    Crystalline structure, electronic and lattice-dynamics properties of NbTe2
  • Autor: Barajas-Aguilar, Aarón Hernán ; Irwin, J. C. ; Garay-Tapia, Andrés Manuel ; Schwarz, Torsten ; Paraguay Delgado, Francisco ; Brodersen, P. M. ; Prinja, Rajiv ; Kherani, Nazir ; Jiménez Sandoval, Sergio J.
  • Assuntos: Crystals ; Electrical properties ; Photoelectron spectroscopy ; Physical properties ; Raman spectroscopy ; Spectrum analysis ; Tellurium
  • É parte de: Scientific reports, 2018-11, Vol.8 (1), p.1-14, Article 16984
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
  • Descrição: Layered-structure materials are currently relevant given their quasi-2D nature. Knowledge of their physical properties is currently of major interest. Niobium ditelluride possesses a monoclinic layered-structure with a distortion in the tellurium planes. This structural complexity has hindered the determination of its fundamental physical properties. In this work, NbTe2 crystals were used to elucidate its structural, compositional, electronic and vibrational properties. These findings have been compared with calculations based on density functional theory. The chemical composition and elemental distribution at the nanoscale were obtained through atom probe tomography. Ultraviolet photoelectron spectroscopy allowed the first determination of the work function of NbTe2. Its high value, 5.32 eV, and chemical stability allow foreseeing applications such as contact in optoelectronics. Raman spectra were obtained using different excitation laser lines: 488, 633, and 785 nm. The vibrational frequencies were in agreement with those determined through density functional theory. It was possible to detect a theoretically-predicted, low-frequency, low-intensity Raman active mode not previously observed. The dispersion curves and electronic band structure were calculated, along with their corresponding density of states. The electrical properties, as well as a pseudo-gap in the density of states around the Fermi energy are characteristics proper of a semi metal.
  • Editor: London: Nature Publishing Group
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.