skip to main content

Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw

Hugelius, Gustaf ; Loisel, Julie ; Chadburn, Sarah ; Jackson, Robert B. ; Jones, Miriam ; MacDonald, Glen ; Marushchak, Maija ; Olefeldt, David ; Packalen, Maara ; Siewert, Matthias B. ; Treat, Claire ; Turetsky, Merritt ; Voigt, Carolina ; Yu, Zicheng

Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (34), p.20438-20446 [Periódico revisado por pares]

Washington: National Academy of Sciences

Texto completo disponível

Citações Citado por
  • Título:
    Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw
  • Autor: Hugelius, Gustaf ; Loisel, Julie ; Chadburn, Sarah ; Jackson, Robert B. ; Jones, Miriam ; MacDonald, Glen ; Marushchak, Maija ; Olefeldt, David ; Packalen, Maara ; Siewert, Matthias B. ; Treat, Claire ; Turetsky, Merritt ; Voigt, Carolina ; Yu, Zicheng
  • Assuntos: Anthropogenic factors ; Carbon dioxide ; carbon stocks ; Climate change ; Emissions ; Global warming ; Greenhouse effect ; greenhouse gas fluxes ; Greenhouse gases ; Learning algorithms ; Machine learning ; Methane ; Nitrogen ; nitrogen stocks ; Nitrous oxide ; northern peatlands ; Organic carbon ; Peat ; Peatlands ; Permafrost ; permafrost thaw ; Physical Sciences ; Radiative forcing ; Spatial distribution
  • É parte de: Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (34), p.20438-20446
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
    Author contributions: G.H., J.L., R.B.J., G.M., M.T., and Z.Y. designed research; G.H., S.C., M.M., M.B.S., C.T., M.T., and C.V. performed research; G.H., J.L., S.C., M.J., M.M., D.O., M.P., M.B.S., C.T., M.T., C.V., and Z.Y. analyzed data; and G.H., J.L., S.C., R.B.J., M.J., G.M., M.M., D.O., M.P., M.B.S., C.T., M.T., C.V., and Z.Y. wrote the paper.
    Edited by Tim R. Moore, McGill University, Montreal, Canada, and accepted by Editorial Board Member B. L. Turner June 5, 2020 (received for review September 20, 2019)
    2Present address: Ontario Forest Research Institute, Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON P6A 2E5, Canada.
  • Descrição: Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data (n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km² and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C·y−1) in northern peatlands will shift to a C source as 0.8 to 1.9 million km² of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH4-C) with smaller carbon dioxide forcing (1 to 2 Pg CO2-C) and minor nitrous oxide losses. We project that initial CO2-C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable.
  • Editor: Washington: National Academy of Sciences
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.