skip to main content

Herbivores with similar feeding modes interact through the induction of different plant responses

de Oliveira, Elisa F. ; Pallini, Angelo ; Janssen, Arne

Oecologia, 2016-01, Vol.180 (1), p.1-10 [Periódico revisado por pares]

Berlin/Heidelberg: Springer Science + Business Media

Texto completo disponível

Citações Citado por
  • Título:
    Herbivores with similar feeding modes interact through the induction of different plant responses
  • Autor: de Oliveira, Elisa F. ; Pallini, Angelo ; Janssen, Arne
  • Assuntos: Animals ; Behavior, Animal ; Biomedical and Life Sciences ; Disease Resistance ; Ecology ; Ecosystem ; Female ; Herbivory ; HIGHLIGHTED STUDENT RESEARCH ; Hydrology/Water Resources ; Life Sciences ; Lycopersicon esculentum ; Lycopersicon esculentum - metabolism ; Lycopersicon esculentum - physiology ; Mites ; Oviposition ; Plant Diseases ; Plant Leaves - metabolism ; Plant Sciences ; Protease Inhibitors - metabolism ; Reproduction ; Tetranychidae ; Tetranychus urticae
  • É parte de: Oecologia, 2016-01, Vol.180 (1), p.1-10
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
    Communicated by Diethart Matthies.
  • Descrição: Plants respond to attacks by herbivores with various defences, which are mounted through the activation of different biochemical pathways that are known to interact. Thus, the attack of a plant by one herbivore species may result in changes in the performances of other species on the same plant. It has been suggested that species with comparable feeding modes induce similar plant defences and such herbivores are therefore expected to have a negative effect on each other’s performance. We studied two closely related phytophagous mite species with identical feeding modes. Yet, one of the species (Tetranychus urticae) induces tomato plant defences, whereas the other (T. evansi) reduces them. We found that the “inducing” species benefits from the downregulation of defences by the “reducing” species, which, in turn, suffers from the induction of defences by the inducing species. Moreover, the performances of the two mite species on leaves that were previously attacked by both species simultaneously were intermediate between that on leaves previously attacked by each of the mites separately. The activity of proteinase inhibitor, a defensive compound, was not found to be intermediate in leaves attacked by both species simultaneously—it was almost as high as the activity seen in leaves with defences induced by T. urticae. Oviposition rates of T. urticae showed a nonlinear correlation with inhibitor activity, suggesting that it is potentially problematic to use this activity as an indicator of the level of plant defence. Our results show that herbivores with similar feeding modes have opposite effects on plant defence and differentially affect each other’s performance on co-infested plants.
  • Editor: Berlin/Heidelberg: Springer Science + Business Media
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.