skip to main content

Revealing the impact of organic spacers and cavity cations on quasi-2D perovskites via computational simulations

Guedes-Sobrinho, Diego ; Neves Silveira, Danilo ; de Araujo, Luis O ; Favotto Dalmedico, Jônatas ; Wenzel, W ; Pramudya, Y ; Piotrowski, Maurício J ; Rêgo, Celso R C

Scientific reports, 2023-03, Vol.13 (1), p.4446-4446, Article 4446 [Periódico revisado por pares]

England: Nature Publishing Group

Texto completo disponível

Citações Citado por
  • Título:
    Revealing the impact of organic spacers and cavity cations on quasi-2D perovskites via computational simulations
  • Autor: Guedes-Sobrinho, Diego ; Neves Silveira, Danilo ; de Araujo, Luis O ; Favotto Dalmedico, Jônatas ; Wenzel, W ; Pramudya, Y ; Piotrowski, Maurício J ; Rêgo, Celso R C
  • Assuntos: Anisotropy ; Cations ; Computer applications ; High temperature ; Temperature effects
  • É parte de: Scientific reports, 2023-03, Vol.13 (1), p.4446-4446, Article 4446
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
  • Descrição: Two-dimensional hybrid lead iodide perovskites based on methylammonium (MA) cation and butylammonium (BA) organic spacer-such as [Formula: see text]-are one of the most explored 2D hybrid perovskites in recent years. Correlating the atomistic profile of these systems with their optoelectronic properties is a challenge for theoretical approaches. Here, we employed first-principles calculations via density functional theory to show how the cation partially canceled dipole moments through the [Formula: see text] terminal impact the structural/electronic properties of the [Formula: see text] sublattices. Even though it is known that at high temperatures, the organic cation assumes a spherical-like configuration due to the rotation of the cations inside the cage, our results discuss the correct relative orientation according to the dipole moments for ab initio simulations at 0 K, correlating well structural and electronic properties with experiments. Based on the combination of relativistic quasiparticle correction and spin-orbit coupling, we found that the MA horizontal-like configuration concerning the inorganic sublattice surface leads to the best relationship between calculated and experimental gap energy throughout n = 1, 2, 3, 4, and 5 number of layers. Conversely, the dipole moments cancellation (as in BA-MA aligned-like configuration) promotes the closing of the gap energies through an electron depletion mechanism. We found that the anisotropy [Formula: see text] isotropy optical absorption conversion (as a bulk convergence) is achieved only for the MA horizontal-like configuration, which suggests that this configuration contribution is the majority in a scenario under temperature effects.
  • Editor: England: Nature Publishing Group
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.