skip to main content
Tipo de recurso Mostra resultados com: Mostra resultados com: Índice

Understanding filamentous cyanobacteria and their adaptive niches in Lake Honghu, a shallow eutrophic lake

Gao, Guangbin ; Bai, Dong ; Li, Tianli ; Li, Jie ; Jia, Yunlu ; Li, Jing ; Wang, Zhi ; Cao, Xiuyun ; Song, Lirong

Journal of environmental sciences (China), 2025-06, Vol.152, p.219-234 [Periódico revisado por pares]

Elsevier B.V

Texto completo disponível

Citações Citado por
  • Título:
    Understanding filamentous cyanobacteria and their adaptive niches in Lake Honghu, a shallow eutrophic lake
  • Autor: Gao, Guangbin ; Bai, Dong ; Li, Tianli ; Li, Jie ; Jia, Yunlu ; Li, Jing ; Wang, Zhi ; Cao, Xiuyun ; Song, Lirong
  • Assuntos: Aphanizomenon ; Biologi ; Biological Sciences ; Cylindrospermopsis ; Dolichospermum ; Ecology ; Ekologi ; Natural Sciences ; Naturvetenskap ; Phytoplankton ; Pseudanabaena ; Trophic status
  • É parte de: Journal of environmental sciences (China), 2025-06, Vol.152, p.219-234
  • Descrição: •The imbalance of N and P in Lake Honghu increased with eutrophication.•Diazotrophic cyanobacteria were more influenced by decreasing DIN/TP ratios than TN/TP ratios.•The dominant pattern of cyanobacteria was regulated by WT and non-algal turbidity. Freshwater lakes globally are witnessing an escalation in the frequency and intensity of cyanobacterial harmful blooms. However, underlying factors influencing the succession or coexistence of cyanobacteria, especially filamentous ones, remain poorly understood. Lake Honghu, a Ramsar Wetland of International Importance with degrading aquatic ecological quality, served as a case study to elucidate the intricate relationship between environmental changes and cyanobacterial dynamics. Our analysis revealed a significant increase in the dominance of filamentous cyanobacteria, marked by high spatiotemporal variability in community structure. This dominance of filamentous diazotrophic cyanobacteria is attributed to a decrease in the ratio of dissolved inorganic nitrogen to total phosphorus and their capacity to utilize organic phosphorus in phosphorus-deficient conditions. Species-specific density variations were linked to diverse environmental factors, with total nitrogen or total phosphorus concentration remaining as a crucial factor influencing dominant cyanobacterial density fluctuations. The dominance of low-temperature-tolerant Aphanizomenon and Pseudanabaena was evident in spring and winter, whereas Dolichospermum and Cylindrospermopsis, which prefer higher temperatures, thrived in summer and autumn. Additionally, non-algal turbidity and heterogeneity can potentially alter the competitive outcome among filamentous cyanobacteria or foster coexistence under conditions of elevated temperatures and nutrient limitation. This study predicts that filamentous cyanobacteria may spread and persist in lakes spanning a wide trophic range. Current findings enhance our comprehension of the dynamic responses exhibited by filamentous bloom-forming cyanobacteria in the face of environmental changes within shallow eutrophic lakes and provide valuable insights for lake managers involved in the remediation of degraded shallow lakes. [Display omitted]
  • Editor: Elsevier B.V
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.