skip to main content
Primo Search
Search in: Busca Geral
Tipo de recurso Mostra resultados com: Mostra resultados com: Índice

Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

Tai, Huanhuan ; Lu, Xin ; Opitz, Nina ; Marcon, Caroline ; Paschold, Anja ; Lithio, Andrew ; Nettleton, Dan ; Hochholdinger, Frank

Journal of experimental botany, 2016-02, Vol.67 (4), p.1123-1135 [Periódico revisado por pares]

England: Oxford University Press

Texto completo disponível

Citações Citado por
  • Título:
    Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)
  • Autor: Tai, Huanhuan ; Lu, Xin ; Opitz, Nina ; Marcon, Caroline ; Paschold, Anja ; Lithio, Andrew ; Nettleton, Dan ; Hochholdinger, Frank
  • Assuntos: Plant Roots - anatomy & histology ; Plant Roots - genetics ; RESEARCH PAPER ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Sequence Analysis, RNA ; Transcriptome ; Zea mays - anatomy & histology ; Zea mays - genetics
  • É parte de: Journal of experimental botany, 2016-02, Vol.67 (4), p.1123-1135
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
    Editor: Adam Price, University of Aberdeen
  • Descrição: Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots.
  • Editor: England: Oxford University Press
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.