Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches
ABCD PBi


Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches

  • Autor: Ribeiro, Tiago L ; Ribeiro, Sidarta ; Belchior, Hindiael ; Caixeta, Fábio ; Copelli, Mauro
  • Zochowski, Michal
  • Assuntos: Action Potentials - physiology ; Anesthesia ; Animals ; Avalanches ; Biology and Life Sciences ; Brain ; Critical phenomena ; Electrodes ; Extinguishing ; Male ; Models, Neurological ; Monkeys & apes ; Nerve Net - physiology ; Neural circuitry ; Neurons ; Phase transitions ; Physical Sciences ; Physics ; Physiological aspects ; Rats, Long-Evans ; Reproducibility of Results ; Residential density ; Sleep ; Statistical analysis ; Statistics ; Statistics as Topic ; Topology ; Two dimensional models
  • É parte de: PloS one, 2014-04, Vol.9 (4), p.e94992-e94992
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
    Competing Interests: The authors have declared that no competing interests exist.
    Conceived and designed the experiments: SR. Performed the experiments: SR HB FC. Analyzed the data: TLR MC. Contributed reagents/materials/analysis tools: TLR SR HB FC MC. Wrote the paper: TLR SR MC.
  • Descrição: The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent [Formula: see text]. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
  • Editor: United States: Public Library of Science
  • Idioma: Inglês