skip to main content

A thermodynamic analysis of hydrogen production by steam reforming of glycerol

Adhikari, Sushil ; Fernando, Sandun ; Gwaltney, Steven R. ; Filip To, S.D. ; Mark Bricka, R. ; Steele, Philip H. ; Haryanto, Agus

International journal of hydrogen energy, 2007-09, Vol.32 (14), p.2875-2880 [Periódico revisado por pares]

Oxford: Elsevier Ltd

Texto completo disponível

Citações Citado por
  • Título:
    A thermodynamic analysis of hydrogen production by steam reforming of glycerol
  • Autor: Adhikari, Sushil ; Fernando, Sandun ; Gwaltney, Steven R. ; Filip To, S.D. ; Mark Bricka, R. ; Steele, Philip H. ; Haryanto, Agus
  • Assuntos: Alternative fuels. Production and utilization ; Applied sciences ; Energy ; Exact sciences and technology ; Fuels ; Gibbs free energy ; Glycerol ; Hydrogen ; Minimization
  • É parte de: International journal of hydrogen energy, 2007-09, Vol.32 (14), p.2875-2880
  • Descrição: Steam reforming of glycerol for hydrogen production involves complex reactions. As a result, several intermediate byproducts are formed and end up in the product stream affecting final purity of the hydrogen produced. Furthermore, the yield of the hydrogen depends on several process variables, such as system pressure, temperature, and ratio of reactants. The first step to understanding the effects of the aforementioned variables is a complete thermodynamic analysis. In this study, a thermodynamic equilibrium analysis has been performed for the steam reforming process of glycerol over the following variable ranges: pressure 1–5 atm, temperature 600–1000 K, and water-to-glycerol feed ratio 1:1–9:1. The equilibrium concentrations of different compounds were calculated by the method of direct minimization of the Gibbs free energy. The study revealed that the best conditions for producing hydrogen is at a temperature > 900 K , atmospheric pressure, and a molar ratio of water to glycerol of 9:1. Under these conditions methane production is minimized, and the carbon formation is thermodynamically inhibited.
  • Editor: Oxford: Elsevier Ltd
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.