skip to main content
Tipo de recurso Mostra resultados com: Mostra resultados com: Índice

Metal–Organic Framework‐Templated Graphitic Carbon Confining MnO/Mn3O4 Nanoparticles via Direct Laser Printing for Electrocatalysis and Supercapacitor

Lam, Do Van ; Dung, Dao Thi ; Roh, Euijin ; Kim, Jae‐Hyun ; Kim, Hyunuk ; Lee, Seung‐Mo

Advanced materials interfaces, 2021-11, Vol.8 (22), p.n/a [Periódico revisado por pares]

Weinheim: John Wiley & Sons, Inc

Texto completo disponível

Citações Citado por
  • Título:
    Metal–Organic Framework‐Templated Graphitic Carbon Confining MnO/Mn3O4 Nanoparticles via Direct Laser Printing for Electrocatalysis and Supercapacitor
  • Autor: Lam, Do Van ; Dung, Dao Thi ; Roh, Euijin ; Kim, Jae‐Hyun ; Kim, Hyunuk ; Lee, Seung‐Mo
  • Assuntos: Carbon ; direct laser printing ; electrocatalysts ; Energy conversion ; Energy storage ; Graphitization ; manganese oxide ; Manganese oxides ; mesoporous graphitic carbon ; Metal-organic frameworks ; Nanoparticles ; Oxygen evolution reactions ; Structural stability ; supercapacitors ; Transition metal oxides
  • É parte de: Advanced materials interfaces, 2021-11, Vol.8 (22), p.n/a
  • Descrição: Transition metal oxides with high specific capacities and variable electronic structures are of paramount importance for advanced energy conversion and storage, yet suffering from low electronic conductivity and poor structural stability during the electrochemical process. Herein, via direct laser printing on an Mn‐based metal–organic framework (Mn‐MOF) in air, MnO/Mn3O4 nanoparticles confined in mesoporous graphitic carbon can be mass‐produced rapidly. It is revealed that the structural transformations in manganese oxides (MnOx → Mn3O4 → MnO) occur during the decomposition of the Mn‐MOF and the MnO/Mn3O4 nanoparticles promote the catalytic graphitization of disordered carbon. The composite shows high electrocatalytic oxygen evolution reaction performances in the alkaline electrolyte with an overpotential of 394 mV at 10 mA cm−2 and good durability of 75% retention after 24 h. In addition, it also exhibits promising supercapacitive performances with a specific capacitance of 194 F g−1 and reasonable stability of 82% retention after 5000 cycles. Unlike thermal calcination in the air that converts an Mn‐based metal–organic framework (Mn‐MOF) into Mn3O4 skeletons, direct laser printing in the air can transform the Mn‐MOF into composites of MnO/Mn3O4 nanoparticles confined in large content of graphitic carbon highly useful for electrocatalysis and supercapacitor.
  • Editor: Weinheim: John Wiley & Sons, Inc
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.