skip to main content

Short solvent model for ion correlations and hydrophobic association

Gao, Ang ; Remsing, Richard C. ; Weeks, John D.

Proceedings of the National Academy of Sciences - PNAS, 2020-01, Vol.117 (3), p.1293-1302 [Periódico revisado por pares]

United States: National Academy of Sciences

Texto completo disponível

Citações Citado por
  • Título:
    Short solvent model for ion correlations and hydrophobic association
  • Autor: Gao, Ang ; Remsing, Richard C. ; Weeks, John D.
  • Assuntos: Aqueous solutions ; Boundary conditions ; Computer simulation ; Dielectric strength ; Field theory ; Fluid dynamics ; Hydrophobicity ; Mathematical models ; Physical Sciences ; Physical simulation ; Pictures ; Point charge ; Solutes ; Solvents
  • É parte de: Proceedings of the National Academy of Sciences - PNAS, 2020-01, Vol.117 (3), p.1293-1302
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
    Author contributions: A.G. and J.D.W. designed research; A.G., R.C.R., and J.D.W. performed research; A.G., R.C.R., and J.D.W. analyzed data; and A.G., R.C.R., and J.D.W. wrote the paper.
    Contributed by John D. Weeks, December 3, 2019 (sent for review October 30, 2019; reviewed by Bo Li and Benjamin Widom)
    Reviewers: B.L., University of California San Diego; and B.W., Cornell University.
  • Descrição: Coulomb interactions play a major role in determining the thermodynamics, structure, and dynamics of condensed-phase systems, but often present significant challenges. Computer simulations usually use periodic boundary conditions to minimize corrections from finite cell boundaries but the long range of the Coulomb interactions generates significant contributions from distant periodic images of the simulation cell, usually calculated by Ewald sum techniques. This can add significant overhead to computer simulations and hampers the development of intuitive local pictures and simple analytic theory. In this paper, we present a general framework based on local molecular field theory to accurately determine the contributions from long-ranged Coulomb interactions to the potential of mean force between ionic or apolar hydrophobic solutes in dilute aqueous solutions described by standard classical point charge water models. The simplest approximation leads to a short solvent (SS) model, with truncated solvent–solvent and solute–solvent Coulomb interactions and long-ranged but screened Coulomb interactions only between charged solutes. The SS model accurately describes the interplay between strong short-ranged solute core interactions, local hydrogen-bond configurations, and long-ranged dielectric screening of distant charges, competing effects that are difficult to capture in standard implicit solvent models.
  • Editor: United States: National Academy of Sciences
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.