skip to main content

Tangential stress beneath wind-driven air–water interfaces

BANNER, MICHAEL L. ; PEIRSON, WILLIAM L.

Journal of fluid mechanics, 1998-06, Vol.364, p.115-145 [Periódico revisado por pares]

Cambridge: Cambridge University Press

Texto completo disponível

Citações Citado por
  • Título:
    Tangential stress beneath wind-driven air–water interfaces
  • Autor: BANNER, MICHAEL L. ; PEIRSON, WILLIAM L.
  • Assuntos: AIR WATER INTERACTIONS ; BUBBLES ; Drag ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; HYDROGEN ; LABORATORIES ; Other topics ; PARTICLE IMAGE VELOCIMETRY ; Phase interfaces ; Physics of the oceans ; Shear stress ; STRESS DISTRIBUTION ; Velocity measurement ; WIND EFFECTS ; Wind stress
  • É parte de: Journal of fluid mechanics, 1998-06, Vol.364, p.115-145
  • Notas: istex:F0A25010B97ADBB27B3D408C551C75CAF17C630D
    ark:/67375/6GQ-44W7HNG4-8
    PII:S0022112098001128
    ObjectType-Article-2
    SourceType-Scholarly Journals-1
    ObjectType-Feature-1
    content type line 23
  • Descrição: The detailed structure of the aqueous surface sublayer flow immediately adjacent to the wind-driven air–water interface is investigated in a laboratory wind-wave flume using particle image velocimetry (PIV) techniques. The goal is to investigate quantitatively the character of the flow in this crucial, very thin region which is often disrupted by microscale breaking events. In this study, we also examine critically the conclusions of Okuda, Kawai & Toba (1977), who argued that for very short, strongly forced wind-wave conditions, shear stress is the dominant mechanism for transmitting the atmospheric wind stress into the water motion – waves and surface drift currents. In strong contrast, other authors have more recently observed very substantial normal stress contributions on the air side. The availability of PIV and associated image technology now permits a timely re-examination of the results of Okuda et al., which have been influential in shaping present perceptions of the physics of this dynamically important region. The PIV technique used in the present study overcomes many of the inherent shortcomings of the hydrogen bubble measurements, and allows reliable determination of the fluid velocity and shear within 200 μm of the instantaneous wind-driven air–water interface. The results obtained in this study are not in accord with the conclusions of Okuda et al. that the tangential stress component dominates the wind stress. It is found that prior to the formation of wind waves, the tangential stress contributes the entire wind stress, as expected. With increasing distance downwind, the mean tangential stress level decreases marginally, but as the wave field develops, the total wind stress increases significantly. Thus, the wave form drag, represented by the difference between the total wind stress and the mean tangential stress, also increases systematically with wave development and provides the major proportion of the wind stress once the waves have developed beyond their early growth stage. This scenario reconciles the question of relative importance of normal and tangential stresses at an air–water interface. Finally, consideration is given to the extrapolation of these detailed laboratory results to the field, where the present findings suggest that the sea surface is unlikely to become fully aerodynamically rough, at least for moderate to strong winds.
  • Editor: Cambridge: Cambridge University Press
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.